Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235641

RESUMO

Live-attenuated Listeria monocytogenes has shown encouraging potential as an immunotherapy platform in preclinical and clinical settings. However, additional safety measures will enable application across malignant and infectious diseases. Here, we describe a new vaccine platform, termed Lm-RIID (L. monocytogenes recombinase-induced intracellular death), that induces the deletion of genes required for bacterial viability yet maintains potent T cell responses to encoded antigens. Lm-RIID grows normally in broth but commits suicide inside host cells by inducing Cre recombinase and deleting essential genes flanked by loxP sites, resulting in a self-limiting infection even in immunocompromised mice. Lm-RIID vaccination of mice induces potent CD8+ T cells and protects against virulent challenges, similar to live L. monocytogenes vaccines. When combined with α-PD-1, Lm-RIID is as effective as live-attenuated L. monocytogenes in a therapeutic tumor model. This impressive efficacy, together with the increased clearance rate, makes Lm-RIID ideal for prophylactic immunization against diseases that require T cells for protection.


Assuntos
Vacinas Bacterianas/imunologia , Listeria monocytogenes/imunologia , Animais , Feminino , Imunoterapia , Listeria monocytogenes/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Vacinas Atenuadas/imunologia , Virulência
3.
Cell Rep ; 25(11): 3074-3085.e5, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540940

RESUMO

Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to high-dose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8+ effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs. Both hematopoietic cell STING expression and signaling through IFNAR are required for tumor-specific T cell activation, and in the context of optimized T cell responses, TNFα is dispensable for tumor control. In a poorly immunogenic model, S100 combined with CPIs generates a survival benefit and durable protection. These results provide fundamental mechanistic insights into STING-induced anti-tumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Animais , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Relação Dose-Resposta Imunológica , Resistencia a Medicamentos Antineoplásicos , Hematopoese , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas S100/administração & dosagem , Proteínas S100/imunologia
4.
Proc Natl Acad Sci U S A ; 115(32): 8179-8184, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038013

RESUMO

Agents that remodel the tumor microenvironment (TME), prime functional tumor-specific T cells, and block inhibitory signaling pathways are essential components of effective immunotherapy. We are evaluating live-attenuated, double-deleted Listeria monocytogenes expressing tumor antigens (LADD-Ag) in the clinic. Here we show in numerous mouse models that while treatment with nonrecombinant LADD induced some changes in the TME, no antitumor efficacy was observed, even when combined with immune checkpoint blockade. In contrast, LADD-Ag promoted tumor rejection by priming tumor-specific KLRG1+PD1loCD62L- CD8+ T cells. These IFNγ-producing effector CD8+ T cells infiltrated the tumor and converted the tumor from an immunosuppressive to an inflamed microenvironment that was characterized by a decrease in regulatory T cells (Treg) levels, a proinflammatory cytokine milieu, and the shift of M2 macrophages to an inducible nitric oxide synthase (iNOS)+CD206- M1 phenotype. Remarkably, these LADD-Ag-induced tumor-specific T cells persisted for more than 2 months after primary tumor challenge and rapidly controlled secondary tumor challenge. Our results indicate that the striking antitumor efficacy observed in mice with LADD-based immunotherapy stems from TME remodeling which is a direct consequence of eliciting potent, systemic tumor-specific CD8+ T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Listeria monocytogenes/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Listeria monocytogenes/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 23(5): 1435-1447, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719256

RESUMO

There are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG). Protection is STING dependent but type I IFN independent and correlates with an increased frequency of a recently described subset of CXCR3-expressing T cells that localize to the lung parenchyma. Intranasal delivery results in superior protection compared with BCG, significantly boosts BCG-based immunity, and elicits both Th1 and Th17 immune responses, the latter of which correlates with enhanced protection. Thus, a CDN-adjuvanted protein subunit vaccine has the capability of eliciting a multi-faceted immune response that results in protection from infection by an intracellular pathogen.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacina BCG/farmacologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Células Th17/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Imunidade Celular/efeitos dos fármacos , Camundongos , Camundongos Knockout , Células Th1/imunologia , Células Th1/patologia , Células Th17/patologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacocinética
6.
Cancer Immunol Res ; 6(4): 422-433, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472271

RESUMO

The cGAS-STING cytosolic DNA sensing pathway may play an integral role in the initiation of antitumor immune responses. Studies evaluating the immunogenicity of various cyclic dinucleotide (CDN) STING agonists administered by intratumoral (i.t.) injection showed potent induction of inflammation, tumor necrosis, and, in some cases, durable tumor-specific adaptive immunity. However, the specific immune mechanisms underlying these responses remain incompletely defined. The majority of these studies have focused on the effect of CDNs on immune cells but have not conclusively interrogated the role of stromal cells in the acute rejection of the CDN-injected tumor. Here, we revealed a mechanism of STING agonist-mediated tumor response that relied on both stromal and immune cells to achieve tumor regression and clearance. Using knockout and bone marrow chimeric mice, we showed that although bone marrow-derived TNFα was necessary for CDN-induced necrosis, STING signaling in radioresistant stromal cells was also essential for CDN-mediated tumor rejection. These results provide evidence for crosstalk between stromal and hematopoietic cells during CDN-mediated tumor collapse after i.t. administration. These mechanistic insights may prove critical in the clinical development of STING agonists. Cancer Immunol Res; 6(4); 422-33. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Membrana/agonistas , Neoplasias/etiologia , Neoplasias/metabolismo , Nucleotídeos Cíclicos/farmacologia , Tolerância a Radiação , Células Estromais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Interferon beta/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Necrose/metabolismo , Necrose/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Transdução de Sinais/efeitos dos fármacos , Células Estromais/patologia , Células Estromais/efeitos da radiação , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Ther Adv Vaccines ; 1(4): 131-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24757520

RESUMO

A principal barrier to the development of effective vaccines is the availability of adjuvants and formulations that can elicit both effector and long-lived memory CD4 and CD8 T cells. Cellular immunity is the presumptive immune correlate of protection against intracellular pathogens: a group composed of bacteria, viruses and protozoans that is responsible for a staggering level of morbidity and mortality on a global scale. T-cell immunity is also correlated with clinical benefit in cancer, and the development of therapeutic strategies to harness the immune system to treat diverse malignancies is currently undergoing a renaissance. Cyclic dinucleotides (CDNs) are ubiquitous small molecule second messengers synthesized by bacteria that regulate diverse processes and are a relatively new class of adjuvants that have been shown to increase vaccine potency. CDNs activate innate immunity by directly binding the endoplasmic reticulum-resident receptor STING (stimulator of interferon genes), activating a signaling pathway that induces the expression of interferon-ß (IFN-ß) and also nuclear factor-κB (NF-κB) dependent inflammatory cytokines. The STING signaling pathway has emerged as a central Toll-like receptor (TLR) independent mediator of host innate defense in response to sensing cytosolic nucleic acids, either through direct binding of CDNs secreted by bacteria, or, as shown recently, through binding of a structurally distinct CDN produced by a host cell receptor in response to binding cytosolic double-stranded (ds)DNA. Although this relatively new class of adjuvants has to date only been evaluated in mice, newly available CDN-STING cocrystal structures will likely intensify efforts in this field towards further development and evaluation in human trials both in preventive vaccine and immunotherapy settings.

8.
Infect Immun ; 77(9): 3958-68, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19528221

RESUMO

Recombinant live-attenuated Listeria monocytogenes is currently being developed as a vaccine platform for treatment or prevention of malignant and infectious diseases. The effectiveness of complex biologic vaccines, such as recombinant viral and bacterial vectors, can be limited by either preexisting or vaccine-induced vector-specific immunity. We characterized the level of L. monocytogenes-specific cellular and humoral immunity present in more than 70 healthy adult subjects as a first step to understanding its possible impact on the efficacy of L. monocytogenes-based vaccines being evaluated in early-phase clinical trials. Significant L. monocytogenes-specific humoral immunity was not measured in humans, consistent with a lack of antibodies in mice immunized with wild-type L. monocytogenes. Cellular immune responses specific for listeriolysin O, a secreted bacterial protein required for potency of L. monocytogenes-derived vaccines, were detected in approximately 60% of human donors tested. In mice, while wild-type L. monocytogenes did not induce significant humoral immunity, attenuated L. monocytogenes vaccine strains induced high-titer L. monocytogenes-specific antibodies when given at high doses used for immunization. Passive transfer of L. monocytogenes-specific antiserum to naïve mice had no impact on priming antigen-specific immunity in mice immunized with a recombinant L. monocytogenes vaccine. In mice with preexisting L. monocytogenes-specific immunity, priming of naïve T cells was not prevented, and antigen-specific responses could be boosted by additional vaccinations. For the first time, our findings establish the level of L. monocytogenes-specific cellular immunity in healthy adults, and, together with modeling studies performed with mice, they support the scientific rationale for repeated L. monocytogenes vaccine immunization regimens to elicit a desired therapeutic effect.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Listeria monocytogenes/imunologia , Vacinas Sintéticas/imunologia , Adulto , Animais , Toxinas Bacterianas/imunologia , Linhagem Celular , Feminino , Vetores Genéticos , Proteínas de Choque Térmico/imunologia , Proteínas Hemolisinas/imunologia , Humanos , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Vacinas Atenuadas/imunologia
9.
Infect Immun ; 76(8): 3742-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18541651

RESUMO

Recombinant vaccines derived from the facultative intracellular bacterium Listeria monocytogenes are presently undergoing early-stage clinical evaluation in oncology treatment settings. This effort has been stimulated in part due to preclinical results that illustrate potent activation of innate and adaptive immune effectors by L. monocytogenes vaccines, combined with efficacy in rigorous animal models of malignant and infectious disease. Here, we evaluated the immunologic potency of a panel of isogenic vaccine strains that varied only in prfA. PrfA is an intracellularly activated transcription factor that induces expression of virulence genes and encoded heterologous antigens (Ags) in appropriately engineered vaccine strains. Mutant strains with PrfA locked into a constitutively active state are known as PrfA* mutants. We assessed the impacts of three PrfA* mutants, G145S, G155S, and Y63C, on the immunologic potencies of live-attenuated and photochemically inactivated nucleotide excision repair mutant (killed but metabolically active [KBMA]) vaccines. While PrfA* substantially increased Ag expression in strains grown in broth culture, Ag expression levels were equivalent in infected macrophage and dendritic cell lines, conditions that more closely parallel those in the immunized host. However, only the prfA(G155S) allele conferred significantly enhanced vaccine potency to KBMA vaccines. In the KBMA vaccine background, we show that PrfA*(G155S) enhanced functional cellular immunity following an intravenous or intramuscular prime-boost immunization regimen. These results form the basis of a rationale for including the prfA(G155S) allele in future live-attenuated or KBMA L. monocytogenes vaccines advanced to the clinical setting.


Assuntos
Antígenos/biossíntese , Antígenos/imunologia , Vacinas Bacterianas/imunologia , Listeria monocytogenes/imunologia , Fatores de Terminação de Peptídeos/genética , Substituição de Aminoácidos/genética , Animais , Antígenos/genética , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/genética , Feminino , Imunização Secundária , Injeções Intramusculares , Injeções Intravenosas , Dose Letal Mediana , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Regulon , Vacínia/prevenção & controle , Virulência , Fatores de Virulência/biossíntese , Fatores de Virulência/imunologia
10.
J Immunol ; 179(11): 7376-84, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18025181

RESUMO

NK cells can identify and eliminate emerging tumors due to altered expression of activating and inhibitory ligands on aberrant cells, a process that is greatly enhanced following NK cell activation. As a principal site of both tumor metastases and immature NK cells, the liver represents a unique anatomic location in which activation of the innate immune system could provide substantial therapeutic benefit. We describe here the NK cell-dependent destruction of a primary hepatic tumor following infection with an attenuated intracellular bacterium derived from Listeria monocytogenes. NK cell-mediated immunity correlated with the ordered migration and maturation of NK cells within the liver. Cytolytic activity was partially dependent on NKG2D-mediated tumor cell recognition, but surprisingly was still effective in the absence of type I IFN. Significantly, NK cell-mediated destruction of a primary hepatic tumor in infected mice led to long-lived CD4- and CD8 T cell-dependent tumor-specific adaptive immunity. These findings establish that activation and differentiation of immature NK cells using complex microbial stimuli can elicit potent anti-tumor activity within the liver, promote cross-presentation of tumor-derived Ags leading to long-lived systemic anti-tumor immunity, and suggests a paradigm for clinical intervention of liver metastatic carcinoma.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Neoplasias Hepáticas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunidade Celular , Imunidade Inata , Interferon gama/biossíntese , Ligantes , Listeriose/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos/imunologia , Receptores Imunológicos/uso terapêutico , Receptores de Células Matadoras Naturais
11.
Exp Cell Res ; 313(15): 3261-75, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17692313

RESUMO

In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wild type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.


Assuntos
Citoplasma/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Neoplasias Mamárias Animais , Sinais de Localização Nuclear/metabolismo , Fosforilação , Ligação Proteica , Ratos
12.
Cancer Res ; 66(2): 1096-104, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16424046

RESUMO

Improved immunization and ex vivo T-cell culture strategies can generate larger numbers and more potent tumor-specific effector cells than previously possible. Nonetheless, the capacity of these cells to eliminate established tumors is limited by their ability to efficiently enter tumor-bearing organs and mediate their effector function. In the current study, we show that the administration of an engineered organ-homing microbe selectively targets tumor-specific immune responses to metastases within that organ. Specifically, an attenuated Listeria monocytogenes strain, which preferentially infects the liver following systemic administration, dramatically enhances the activity of a cancer vaccine against liver metastases but not metastases in the lung. This enhanced activity results from both local recruitment of innate immune effectors as well as concentration and increased activation of vaccine-induced antitumor T cells within the liver. These findings show a general approach to focus systemic cancer immunotherapies to specific organs bearing tumor metastases by taking advantage of differential tropisms and the proinflammatory nature of microbes.


Assuntos
Vacinas Anticâncer/imunologia , Engenharia Genética , Listeria monocytogenes/genética , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Animais , Feminino , Hepatite/virologia , Humanos , Imunoterapia/métodos , Inflamação , Listeria monocytogenes/patogenicidade , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T
13.
Proc Natl Acad Sci U S A ; 101(38): 13832-7, 2004 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-15365184

RESUMO

The facultative intracellular bacterium Listeria monocytogenes is being developed as a cancer vaccine platform because of its ability to induce potent innate and adaptive immunity. For successful clinical application, it is essential to develop a Listeria platform strain that is safe yet retains the potency of vaccines based on wild-type bacteria. Here, we report the development of a recombinant live-attenuated vaccine platform strain that retains the potency of the fully virulent pathogen, combined with a >1,000-fold reduction in toxicity, as compared with wild-type Listeria. By selectively deleting two virulence factors, ActA (DeltaactA) and Internalin B (DeltainlB), the immunopotency of Listeria was maintained and its toxicity was diminished in vivo, largely by blocking the direct internalin B-mediated infection of nonphagocytic cells, such as hepatocytes, and the indirect ActA-mediated infection by cell-to-cell spread from adjacent phagocytic cells. In contrast, infection of phagocytic cells was not affected, leaving intact the ability of Listeria to stimulate innate immunity and to induce antigenspecific cellular responses. Listeria DeltaactA/DeltainlB-based vaccines were rapidly cleared from mice after immunization and induced potent and durable effector and memory T-cell responses with no measurable liver toxicity. Therapeutic vaccination of BALB/c mice bearing murine CT26 colon tumor lung metastases or palpable s.c. tumors (>100 mm(3)) with recombinant Listeria DeltaactA/DeltainlB expressing an endogenous tumor antigen resulted in breaking of self-tolerance and long-term survival. We propose that recombinant Listeria DeltaactA/DeltainlB expressing human tumor-associated antigens represents an attractive therapeutic strategy for further development and testing in human clinical trials.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/toxicidade , Neoplasias do Colo/imunologia , Hepatócitos/imunologia , Listeria monocytogenes/imunologia , Neoplasias Pulmonares/imunologia , Monócitos/imunologia , Linfócitos T/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Deleção de Genes , Hepatócitos/efeitos dos fármacos , Humanos , Memória Imunológica , Listeria monocytogenes/genética , Neoplasias Pulmonares/secundário , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , RNA Bacteriano/genética , RNA de Transferência de Arginina/genética , Linfócitos T/efeitos dos fármacos
14.
Mol Biol Cell ; 14(3): 1221-39, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631736

RESUMO

The transcriptionally regulated serum and glucocorticoid inducible protein kinase (Sgk) is localized to the nucleus in a serum-dependent manner, and a yeast two-hybrid genetic screen uncovered a specific interaction between Sgk and the importin-alpha nuclear import receptor. In vitro GST pull down assays demonstrated a strong and direct association of importin-alpha with endogenous Sgk and exogenously expressed HA-tagged Sgk, whereas both components coimmunoprecipitate and colocalize to the nucleus after serum stimulation. Consistent with an active mechanism of nuclear localization, the nuclear import of HA-Sgk in permeabilized cells required ATP, cytoplasm, and a functional nuclear pore complex. Ectopic addition of a 107 amino acid carboxy-terminal fragment of importin-alpha, which contains the Sgk binding region, competitively inhibited the ability of endogenous importin-alpha to import Sgk into nuclei in vitro. Mutagenesis of lysines by alanine substitution defined a KKAILKKKEEK sequence within the central domain of Sgk between amino acids 131-141 that functions as a nuclear localization signal (NLS) required for the in vitro interaction with importin-alpha and for nuclear import of full-length Sgk in cultured cells. The serum-induced nuclear import of Sgk requires the NLS-dependent recognition of Sgk by importin-alpha as well as the PI3-kinase-dependent phosphorylation of Sgk. Our results define a new role importin-alpha in the stimulus-dependent control of signal transduction by nuclear localized protein kinases.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sinais Direcionadores de Proteínas , alfa Carioferinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Meios de Cultura Livres de Soro , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Imediatamente Precoces , Poro Nuclear/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , alfa Carioferinas/genética
15.
J Biol Chem ; 278(8): 5871-82, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12488318

RESUMO

The effects of multiple stress stimuli on the cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) were examined in NMuMg mammary epithelial cells exposed to hyperosmotic stress induced by the organic osmolyte sorbitol, heat shock, ultraviolet irradiation, oxidative stress induced by hydrogen peroxide, or to dexamethasone, a synthetic glucocorticoid that represents a general class of physiological stress hormones. Each of the stress stimuli induced Sgk protein expression with differences in the kinetics and duration of induction and in subcellular localization. The environmental stresses, but not dexamethasone, stimulated Sgk expression through a p38/MAPK-dependent pathway. In each case, a hyperphosphorylated active Sgk protein was produced under conditions in which Akt, the close homolog of Sgk, remained in its non-phosphorylated state. Ectopic expression of wild type Sgk or of the T256D/S422D mutant Sgk that mimics phosphorylation conferred protection against stress-induced cell death in NMuMg cells. In contrast, expression of the T256A/S422A Sgk phosphorylation site mutant has no effect on cell survival. Sgk is known to phosphorylate and negatively regulate pro-apoptotic forkhead transcription factor FKHRL1. The environmental stress stimuli that induce Sgk, but not dexamethasone, strongly inhibited the nuclear transcriptional activity and increased the cytoplasmic retention of FKHRL1. Also, the conditional IPTG inducible expression of wild type Sgk, but not of the kinase dead T256A mutant Sgk, protected Con8 mammary epithelial tumor cells from serum starvation-induced apoptosis. Taken together, our study establishes that induction of enzymatically active Sgk functions as a key cell survival component in response to different environmental stress stimuli.


Assuntos
Sobrevivência Celular/fisiologia , Células Epiteliais/fisiologia , Glândulas Mamárias Animais/fisiologia , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/genética , Substituição de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Feminino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/fisiologia , Humanos , Proteínas Imediatamente Precoces , Isopropiltiogalactosídeo/farmacologia , Cinética , Glândulas Mamárias Animais/citologia , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...